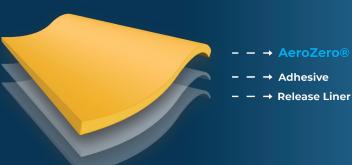


KEY FEATURES

- Ultra-low thermal conductivity
- Ultra-low thermal diffusivity
- Flexible, lightweight, and thin
- RF transparent
- Peel-and-stick
- 85% air composition
- NASA ASTM E595 certified
- Cyclical thermal protection (-180 °C to 300 °C)



40x BETTER AT BLOCKING HEAT TRANSFER THAN TRADITIONAL POLYIMIDE TAPES IN SPACE VACUUM

Applications

- Composite structures
- Harness wrapping
- Spacecraft skins
- Electronics protection
- Optics, sensors, and detectors
- Vacuum chamber systems
- Solar cell protection
- High-density batteries

AZ-TPS

+1 (888) 350–7586 info@blueshiftmaterials.com www.blueshiftmaterials.com

NEW SATELLITE DESIGNS ARE OUTPACING TRADITIONAL MATERIAL SOLUTIONS

Built for the New Space Race

- Thermal conductivity in space vacuum: 0.008 W/m·K (Pressure = <10⁻⁵ Torr)
 - Thermal diffusivity in space vacuum: 0.034 MM²/s (pressure = <10-5 Torr)
 - · Proven in 10,000+ ft² of deployed spacecraft
 - · Meets NASA's ASTM E595 outgassing standards

Why Engineers Are Using Our Materials:

- Compared with traditional polyimide in a space vacuum, AZ-Tapes offer:
 - <u>15x</u> lower thermal conductivity
 - <u>3x</u> lower thermal diffusivity
- Electrical Insulation & RF Transparency
- Lightweight and flexible
 - 85% air-core technology, thin profile (<200 μm)
- Peel-and-stick

